早期的電動汽車上,直流電動機的調速采用串接電阻或改變電動機磁場線圈的匝數(shù)來實現(xiàn)。因其調速是有級的,且會產生附加的能量消耗或使用電動機的結構復雜,現(xiàn)已很少采用。應用較廣泛的是晶閘管斬波調速,通過均勻地改變電動機的端電壓,控制電動機的電流,來實現(xiàn)電動機的無級調速。在電子電力技術的不斷發(fā)展中,它也逐漸被其他電力晶體管(入GTO、MOSFET、BTR及IGBT等)斬波調速裝置所取代。從技術的發(fā)展來看,伴隨著新型驅動電機的應用,電動汽車的調速控制轉變?yōu)橹绷髂孀兗夹g的應用,將成為必然的趨勢。
在驅動電動機的旋向變換控制中,直流電動機依靠接觸器改變電樞或磁場的電流方向,實現(xiàn)電動機的旋向變換,這使得電路復雜、可靠性降低。當采用交流異步電動機驅動時,電動機轉向的改變只需變換磁場三相電流的相序即可,可使控制電路簡化。此外,采用交流電動機及其變頻調速控制技術,使電動汽車的制動能量回收控制更加方便,控制電路更加簡單。
轉向裝置是為實現(xiàn)汽車的轉彎而設置的,由轉向機、方向盤、轉向機構和轉向輪等組成。作用在方向盤上的控制力,通過轉向機和轉向機構使轉向輪偏轉一定的角度,實現(xiàn)汽車的轉向。多數(shù)電動汽車為前輪轉向,工業(yè)中用的電動叉車常常采用后輪轉向。電動汽車的轉向裝置有機械轉向、液壓轉向和液壓助力轉向等類型。
支撐發(fā)展的電網技術:
電動汽車電池更換站運行特性,更換站作為分布式儲能單元接入電網的關鍵技術和控制策略;電池梯次利用的篩選原則、成組方法和系統(tǒng)方案;更換站多用途變流裝置;更換站與儲能站一體化監(jiān)控系統(tǒng);更換站與儲能站一體化示范工程。
電動汽車充電需求特性和規(guī)模化電動汽車充電對電網的影響;電動汽車有序充電控制管理系統(tǒng);電動汽車有序充電試驗系統(tǒng)。